_
Q
_
\Box
_
Ø
w
\Box
_
Ν
14
0
•
Ω
ш
-
-
\supset
_
Ω
₹
₹
>
>
-
$\overline{}$
$\overline{}$
• •
\circ
ч
-
-
_
모

Title Coding Theory	Code 1018321910108010125
Field Electronics and Telecommunications	Year / Semester 5 / 9
Specialty Telecommunication Systems	Course Core
Hours Lectures: 2 Classes: 2 Laboratory: 2 Projects / seminars: -	Number of credits 8
·	Language polish

Lecturer:

dr hab. inż. Hanna Bogucka

Wydział Elektroniki i Telekomunikacji

ul. Polanka 3 60-965 Poznań

tel. 061-665-3911, fax. 061-665-3823 e-mail: hbogucka@et.put.poznan.pl

Faculty:

Faculty of Electronics and Telecommunications

ul. Piotrowo 3A 60-965 Poznań

tel. (061) 665-2293, fax. (061) 665-2572

e-mail: office det@put.poznan.pl

Status of the course in the study program:

Obligatory course, Faculty of Electronics and Telecommunications, field Electronics and Telecommunications, specialization: Communication Systems

Assumptions and objectives of the course:

Knowledge of most important classes of error-correcting and detecting codes and their decoding methods

Contents of the course (course description):

Idea of redundant coding, code classification, methods of block code description, polynomial codes, cyclic codes, Galois fields and their application in construction of block codes, algebraic and non-algebraic decoding of block codes, non-binary codes, method of description of convolutional codes, algebraic and sequenctial decoding of convolutional codes, turbo-codes and their decoding, trellis coding, LDPC coding

Introductory courses and the required pre-knowledge:

Basic knowledge of communication systems and information theory, and field algebra

Courses form and teaching methods:

Lectures in the form of multi-media presentations, classes based on problems solving, and laboratory exercises.

Form and terms of complete the course - requirements and assessment methods:

Credit based on tests in the 7th and 14th week of the semester, conducted laboratory experiments and reports on the achieved results, written exam on the theory.

Basic Bibliography:

Additional Bibliography: